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PREDICTION OF FULLY-DEVELOPED FLOW IN A TUBE 
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Abstract-The problem of fully-developed, laminar and turbulent, uniform-property flow in a tube con- 
taining a twisted-tape has been formulated in terms of partial differential equations of momentum and 
heat transfer. These equations have been solved by adapting an existing numerical procedure for two- 
dimensional elliptic equations to predict the friction and heat-transfer characteristics of the flow. 

A set of laminar flow predictions are presented to demonstrate the influence of Reynolds number, 
twist-ratio, Prandtl number and the fin-parameter on the flow characteristics. 

The turbulent-viscosity, necessary to predict the turbulent flow characteristics, has been calculated by 
solving differential equations for kinetic energy of turbulence and the energy dissipation rate. This 
approach is, however, found to be inadequate for accurate quantitative predictions; a measure for 

eliminating this inadequacy is suggested. 

NOMENCLATURE 

a, bl, bz, coefficients in the general partial 

c, a, differential equation; 

c,,G> coefficients in the general finite difference 

C,,cW* equation; 

C P’ specific heat; 

C fin, fin parameter; 
C,, , C,, C,, constants in the k-6 turbulence model; 

Q diameter of the tube; 

&, hydraulic diameter; 

:: 

constant in the “log-law”; 
friction factor based on hydraulic 
diameter; 

fi> friction factor based on internal 
diameter; 

h, heat-transfer coefficient; 

H, pitch for 180” rotation of twisted-tape; 

k, kinetic energy of turbulence; 

K,, thermal conductivity of fluid; 

Kl> thermal conductivity of tape metal; 

1, length scale of turbulence; 

n, distance between the wall grid node and 
the adjacent interior node; 

Nu, average Nusselt number based on 

hydraulic diameter; 

Nui, average Nusselt number based on 
internal diameter; 

P, pressure; 

p, mean pressure; 
P 01 variable pressure; 

_~ -_ 
*Present address: Department of Mechanical Engineer- 

ing, Indian Institute of Technology, Bombay-400076. 

Prandtl number; 
effective Prandtl number; 

heat fluxes, divided by C, in radial, 
tangential and axial directions; 

heat input per unit length; 
radius of the tube; 

cylindrical polar coordinates; 

coordinates of a rotating coordinate 
system; 

Reynolds number based on hydraulic 
diameter; 

Reynolds number based on internal 
diameter; 

source term of finite-difference equation; 
distance from the wall; 

temperature; 

radial, tangential and axial time-mean 
velocity; 
shear velocity; 
twist ratio. 

thickness of the twisted tape; 
dissipation; 
dynamic viscosity; 
effective viscosity; 
density; 

dependent variable of the partial differ- 
ential equation; 
stream function; 
laminar diffusivity multiplied by p; 
effective value of I-; 
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w. axial vorticity; 
& constant in the “log-law”. 

Subscripts 

b. 

LIy 

no, 
turb, 
eff, 

bulk value over the cross-section; 
mean value over the cross-section; 
wall grid node; 
near-wall grid node; 
turbulent part of the effective value; 
effective value. 

1. INTRODUCTION 

TWISTED-TAPE inserts inside circular tubes provide a 
means of increasing the surface heat-transfer coefficient 
within the tubes of tubular heat exchangers. Figure 1 
shows the layout of a tube contai~ng a twisted-tape. 
The tape consists of a long metal strip which has been 
twisted about its longitudinal axis, the width of the tape 
being equal to the internal diameter of the tube. 

firstly, to show how the necessary transport equations 
are derived, and solved numerically on a computer; 
and secondly, to present predicted characteristics of the 
flow to demonstrate the scope of the numerical pro- 
cedure described in the paper. Of course, the numerical 
procedures do not eliminate the need for experiments. 
but they certainly diminish their extent and cost by 
highlighting the most influential parameters governing 
the characteristics under given conditions. 

The paper is divided into further four sections: 
Section 2 describes the derivation of the necessary 
transport equations; Section 3 shows how an existing 
numerical procedure is adapted to solve the equations: 
in Section 4, some predicted data are presented; and 
finally, concluding remarks are made in Section 5. 

2. THE MATHEMATICAL PROBLEM 

2.1. The domain of interest 
In the region of the fully-developed flow, the dis- 

tributions of the vefocities are independent of the axial 

c3 
Directio 
of flow 

LA T;be 
Sect Ion AA 

FIG. 1. Illustration of the twisted-tape inside a circular tube 

The pressure-drop and heat-transfer characteristics 
of the fully-developed turbulent flow in tubes contain- 
ing twisted tapes have been investigated experimentally 
by many investigators (see, for example, [l-3]); and 
empirical correlations to predict these characteristics 
have been proposed. A survey carried out by the present 
author (see Date [18]) showed that the available ex- 
perimental data are not extensive, and the correlations 
to predict them are applicable only for a certain range 
of the values of the inde~ndent parameters. For 
example, no experimental data exist for laminar flows, 
and for fluids with high Prandtl numbers. Similarly, 
the proposed correlations do not demonstrate con- 
sistent agreement regarding, for example, the influence 
of ~uid-property variations or Prandtl number on 
Nusselt numbers. In order to gain knowledge of the 
characteristics of the flow over a range of conditions, 
more experimental data are needed. However, the effort 
involved will be prohibitively expensive. 

A less tim~and-cost-consuming approach is to 
derive and solve the differential equations which de- 
scribe the transport of momentum and heat in the 
twisted tape flow. The purpose of the present paper is 

distance along the tube; in other words, they are 
identical at every cross-section of the tube. One such 
cross-section is shown in Fig. 1 (section A-A). 

Contrary to the real situation, it is assumed here 
that the width of the tape exactly equals the internal 
diameter of the tube. The ratio of the tape thickness 6 
to the tube diameter D is usually small for the free 
space to be regarded as two twisting ducts of semi- 
circular cross-section which rotate through 180 degrees 
in an axial distance H. Since the flow will be identical 
in each of the two semi-circular sections, only one of 
these need be considered. 

2.2. The coordinate system 
The only suitable coordinate system is one in which 

the angular coordinate is measured always from the 
surface of the twisted-tape. Such a rotating cylindrical 
polar coordinate system (r’, z’, 0’) say (see Fig. 2) is 
then related to the customary stationary system (r, z, R) 
by the foIlowing equations: 

r’ = r, 
_’ - _ -2. (1) 

and 0’ = t) + x,-/H. 



Prediction of fully-developed flow in a tube containing a twisted-tape 84-I 

The positive sign before nz/H implies anti-clockwise 

rotation of the tape as z increases, when distances z’ 
and z are measured in the direction of axial flow, and 
O’and 8’ are measured in the clockwise direction. 

As a consequence of equations (l), the following 
relations may be written: 

d (! 

dr W’ 

a a - 
ii’ aw' (2) 

and 
a a 71a 

z=aZ’+Hj$ 

These relations are now employed to transform the 
well-established (see Bird et al. [4]) transport equations 

of momentum and heat in (r, z, 0) system to those in 

(I’, z’, @) system. 

2.3. The transport equations in (r’, z’, 0’) system 
The starting point in the derivation of the necessary 

transport equations is the equations in the (r, z, 0) 
system. Before making use of these equations, the 
following mathematical condition of the fully- 

developed flow must be noted. It is that, 

a - 0, z- 
for all dependent variables, except for the mean pressure 
P, and temperature T, and ap/dz’ and aT/az’ are to 

be treated as known constants. 
It follows from equations (2) and (3) that the con- 

tinuity, momentum and heat transport equations in 
(r’, z’, 0’) system are as follows: 

Continuity equation 

Axial momentum equation 

Tangential momentum equation 

,{,$+(;+?$!!!+!LJ!} = _fG!!$ 

1 ah) 
V27,,0) + 7 ae 

71 ah) 
--‘+-- 

H a@ ’ (6) 

Radial momentum equation 

+$+(g++I:)g-q = -$ 

1 1 aV7, ,I 1 ha 7e,8 n a7,,, 
- _I 

r’ dr’ +r’dB’-T+Hx ’ 
I 

(7) 

Temperature equation 

Since ap/laz’ and aT/dz’ are known constants, 

equations (4-8) are two-dimensional : the dependent 
variables, V,, &, V, and T, that were functions of 

r, z and 0 are now functions of r’ and 0’ alone. These 
equations are general, and applicable to both laminar 
and turbulent flows if, in the latter case, the instan- 

taneous velocities are replaced by their time-averaged 

values. 
It is important, at this stage, to note the way in 

which the pressure-terms in equations (4-7) are treated. 

It is assumed that the pressure at any point in the flow 
consists of two parts. Thus, P is expressed as: 

P(r, z, 0) = P(z’) + P,(r’, @) (9) 

where P(z’) is the mean pressure at a cross-section 

and Po(r’, 0’) is that component of the pressure which 

varies over the cross-section. 
The terms on the left hand side of the equations 

(5)-(S) represent the convective fluxes, whereas the 

terms containing 7’s and q’s represent the diffusive 
fluxes of momentum and heat respectively. When in- 

formation regarding r’s and q’s is specified, the math- 
ematical statement of the transport equations is 

complete. 

2.4. The dz$iision fluxes 
For laminar fluids, the stresses T’S are related* to the 

velocity gradients (or strain) via p. Similarly, q’s are 
related* to the temperature gradients via r; and p 

and r are constants for uniform property fluids. For 
turbulent flow one may postulate the existence of 
effective exchange coefficients analogous to p and I-. 
Thus, for turbulent flow, 

and (10) 

The subscript “turb” signifies the turbulent part of 
the effective values. Further, it may be postulated that: 

r& = M/PGff,ry (11) 

*The relations for each stress and heat flux component in 
a rotating coordinate system are given in Date [19]. 
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where Pr,fl.T if the effective Prandtl number. Experi- 
mental evidence (see Spalding [5]) suggests that its 
value is about 0.9. 

Thus the T’S and q’s are replaced by one unknown ha; 
in Section 2.7, the method adopted for its determination 
is discussed. For the time being it is assumed that pL,R is 
knowable. 

In the discussion to follow, use will be made of 
equations (10) and (11) to represent the diffusion fluxes, 
with a reminder that when laminar flow is considered, 

~~8 and pr&T are to be replaced by the respective 
laminar values: the laminar viscosity p and the laminar 
Prandtl number Pr. 

2.5. Introduction of vorticity and stream function 
Equations (5)-(g), after substituting expressions for 

7‘s and q’s, form a set of equations which need to be 
solved. From the point of view of numerical solutions, 
the explicit appearance of pressure PO in these equations 
poses certain difficulties. To eliminate its appearance 
from equations (6) and (7), the axial vorticity w is 
introduced such that the information contained in the 
two equations is completely described by a single 
equation for w, where w is defined as: 

(12) 

The process of arriving at the vorticity equation is as 
follows: differentiate equations (6) with respect to r’, 
and equation (7) with respect to Q’, and subtract the 
first from the second. Using the definition (12), the 
resulting expression can be transformed into the re- 
quired vorticity equation. It is as follows : 

The vorticity equation 

where (13) 

The appearance of PO from equation (5) for axial 
momentum is still not removed, although it is easily 
seen that the term aP,/iM can be found from equa- 
tion (6). 

Now the stream function II, is defined thus: 

and 

a* 
SF= --$I/,. 

(14) 

(15) 

These definitions, along with the definition of vor- 
ticity can be manipulated so that, the statement of 
mass conservation, as expressed by the continuity 
equation (4), is implicitly satisfied. The result of this 
manipulation is generally termed as the stream function 
equation: 

The stream function equation 

= 0. (16) 

Thus, by introducing w and $ the mathematical 
statement of the problem has been redefined; but with 
the following advantages: 

1. 

2. 

Since the stream function equation satisfies mass 
conservation, no explicit recourse to the con- 
tinuity equation is necessary. 
The introduction of w has replaced equations 
(6) and (7) by a single equation for w; at the same 
time, partial elimination of pressure PO has also 
been achieved. 

The equations, which now need to be solved are: 
equation (16) for $, equation (13) for w, equation (5) 
for V, and equation (8) for T. 

Following Gosman et al. [6] these equations can be 
represented in a general form. 

2.6. Generalized representation of the equations 
The terms 

and V, 

appear as multipliers on the left-hand side of the 
equations for w, V, and T. These terms can be replaced 
by stream function via equations (14) and (15). This 
done, the equations for $, w, V, and T can be +;{&(Lkfig)+g&(&*g)}. represented by a general equation for any dependent- 
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Table 1. Equations for $, w, V, and T 

4 a tJ1 h1 C d 

$ 0 Upr’ r’lp 1 

w 1 r’ 

K 1 mr’ 

1 7t’r’ 
T 1 I- eff,T ;+s 

( ) 

?T 
l- ’ etT.T’ 1 -r’V,- 

SZ’ 

*The term d, is as follows: 

variable 4. This general equation is as follows: 

+ convection terms + 

/- diffusion terms ____I 

fd=O, 

source terms 
(17) 

where expressions for a, bl, b2, c and d for each 
dependent variable 4 are given in Table 1. 

where k is the kinetic energy of turbulence, and E is 
the energy dissipation rate; C, is a constant whose 

value is to be specified. Now, the spatial distributions 
of k and E are determined by solving, with appropriate 

boundary conditions, the partial differential equations 
for the conservation of k and E. The complete descrip- 

tion of the derivation of these equations is beyond the 
scope of this paper; here their final forms are presented 
in the same manner as those for $, w, V, and T in 

Table 1. 

Such a generalized representation of the equations 
will allow concentration on equation (17), when the 
numerical solution of the equations is discussed in 
Section 3. Before proceeding to Section 3, however, 

here is .a reminder: A method for determining bff, 
which is vital to the prediction of turbulent flow is still 

not described. Determination of &f is the subject 
matter of the next sub-section. 

4 a bl 

1 &’ 
6 1 Ta7.E -+jp 

( ) r’ 

2.7. Determination of ,uef for turbulent flow where 

To determine ~a, one must determine the spatial 
distribution ofkUrb over the semi-circular cross-section. 
One may specify AU& as an external information to the 
set of equations, or it may be related to the product of 
(Prandtl’s) mixing length and the local velocity gradi- 
ent, where the mixing length is again specified by an 
algebraic expression. However, since the twisted-tape 
flow is assymetric, the algebraic expressions, referred 
to above, are difficult to invent, especially in the absence 
of extensive experimental data for velocity profiles. 

and preK,k and Prcf,E, like Pr&T are constants. C, and 
C, are other two constants; and G, which stands for 
the generation of kinetic energy, is given by: 

Here, a method is chosen which does not necessitate 
specification of any algebraic expressions; but simply 
requires specification of certain constants which may 
be universal. The method is as follows: 

HMT Vol. 17. No. 8-D 

849 

Following the dimensional arguments of Prandtl [9] 

and Kolmogorov [8] hUrb is written as: 

Table 2. Equations fork and E 

h2 c d 

reff,kr’ 1 r'(G - p&) 

reK,e r’ 1 r’ CGiG-CDpe2/k 
( 
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Jones and Launder [lo] have suggested the following 
values for the various constants mentioned in the above 
discussion: 

c, = 0.09, 

c, = 1.55, 

c, = 2.0, (21) 

Pr,,, = 1.0, 

and Pr,,, = 1.3. 

Note that Pr,qr equals 0.9 (see equation 11). 
These values of the constants have proved to be valid 

in many flow situations. For example, Laufer’s [20] 
experimentally measured axial velocity profiles for 
fully-developed flow in a circular pipe can be predicted 

within 1 per cent (see Date [19]); the performance of 
two-dimensional film-cooling geometries was predicted 
accurately by Mathews [ll]. 

The numerical procedure to be described in the next 
section is applicable to the equations of k and E as 

well; here it is emphasized again that these equations 
have eliminated the need for algebraic specification of 

(t&. The extent of the success of this method will be 
demonstrated in Section 4, where some typical predic- 

tions are pre:ented. 

The set of differential equations specified above 

cannot be solved unless the conditions of the variables 4 
are specified on the boundaries. The boundaries of 
interest are: the tube wall surface and the twisted-tape 

surface at any semi-circular cross-section. The dis- 
cussion of the boundary conditions is deferred to the 

next section for convenience. 

3. THE NUMERICAL SOLUTION OF THE EQUATIONS 

3.1. The jnite-differencr equations and their solution 

The finite-difference solution procedure adopted to 

solve the general partial differential equation (17) is 
described in detail by Gosman et a[. (IS]; therefore, 
only its main features are described here. 

Essentially, the partial differential equation (17) for 

each variable 4 (4 variables for laminar flow and 6 
variables for turbulent flow) is converted into a set of 
algebraic equations through a finite-difference algor- 
ithm. These algebraic equations can be formulated as 
follows* : 

4,= Gh4 +G4 +wk+Gv4v+~, (22) 

where the c’s are the coefficients which usually depend 
on the variables 4’s, and depending on the influence 
of convective and diffusive fluxes, determine how 
heavily the neighbouring values of Q, should weigh in 
the determinations of 4,. The effects of sources of 4 
are contained in term S. 

*See Fig. 2 for the meaning of the subscripts. 

There is one such equation for each variable 4 at 
every interior node ofthe grid; with conditions specified 
on the boundaries (node referred to by 0 in Fig. 2), 

there will be as many equations as there are unknowns. 
The set of algebraic equations given by (22), therefore, 
is a solvable set. The solution of this set, however, 

will require an iterative procedure because the C’s and 

S depend on the 4’s. Gosman et ul. adopt the Gauss-~ 
Seidel iteration procedure which incorporates the 
successive substitution formula. 

E 

Tape wall 

FIN;. 2. Illustration of the grid-distribution, 
and a typical interior node P of the grid. 
Note the area called “cell” bounded by 
dotted lines, and the wall node (0) and the 

near-wall node (no). 

For the twisted-tape flow equations described in 
Section 2, this standard iteration procedure does not 

always produce convergence. For instance, in compu- 
tations at very high Reynolds numbers and high twists 
of the tape, the source term of the vorticity equation 

(see Table 1) becomes very large. Under these condi- 
tions, a given flow perturbation (i.e. a change in $ 

and V,) produces a large change in (11~ (see equation 22). 
Thischangein(+,causes thestreamfunction to be altered 
greatly, since (11~ appears in the source term of the 
stream function equation. This greatly altered stream 
function distribution perturbs the flow further. Clearly 
this computation scheme can become unstable, al- 
though the physical flow situation is a stable one. 
Gosman and Spalding [7] suggested an iterative pro- 
cedure to cure such an instability; the procedure was 

called the “Multi-point circulation adjustment” 

(MPCA) procedure. The application of the procedure 
to the twisted-tape flow equations is described in detail 
in Date [19]; here, only its principal ‘features are 
summarized. 

The procedure simultaneously adjusts the value of 
vorticity wp and its neighbours wH, us, wE and ow, 
and subsequently the stream function $, in a single 
sweep of the field of computation. The constraints on 
these adjustments are: 

(a) that the imbalance in equation (22) for vorticity 
is reduced to zero at every grid node; 

(b) that the “circulation principle” for the cells sur- 
rounding grid nodes P, N, S, E and W is satisfied. 



The circulation principle requires that: 

jAco.dA=~ V.&S (23) 

where A is area of the cell, V is the velocity along 
the boundaries of the cell, and dS is the incremental 

length along these boundaries. 
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twisted-tape, and by solving a one-dimensional heat- 

conduction equation along the width of the tape. Here 

the result of the analysis which is given in Date [19] 

is presented. The analysis gives rise to a quadratic 

expression for the tape surface temperature To, say; this 
expression is: 

aTi+bT,+c = 0, (25) 

where a, b and c are functions of the temperatures at 

nodes adjacent to To, and Cfi,, where Cs, is the fin- 

parameter defined as : 

Besides MPCA, there are other conventional pro- 
cedures such as the under-relaxation of the finite- 
difference equations and the under-relaxation of source 

terms of the equations which are necessary to obtain 
convergence; the details of these are given in Date [ 191. 

3.2. Boundary conditions 
As mentioned in the previous section, boundary con- 

ditions are necessary to “close” the numerical problem. 

The equations for fully-developed flow are two-dimen- 
sional and elliptic, and conditions of the variables 4 
must be specified on four boundaries of the domain 

of interest. These boundaries, with reference to Fig. 2, 
are: AB, BEC, CD, and DA. The boundary DA is 
essentially the centre point of the twisted-tape; here it 

is treated as a boundary of zero radius. 
In the subsequent discussion the boundary condi- 

tions for the laminar and turbulent flow are described 
separately. 

Laminar jlow. Each boundary of the domain of 
interest represents a solid wall; the velocity V, is there- 

fore zero on all boundaries, and the stream function ti 
assumes a constant val.ue: IJ was assigned the value 

zero in the present calculations. The values of w and 
T, however, require further consideration. 

Vorticity is defined in terms of the gradients of the 

cross-stream velocities but the distribution of these 
velocities in the near-wall region is unknown. The 
boundary conditions for vorticity can however be 

obtained from the “no-slip” condition, and from the 

assumption regarding the profiles of the velocity com- 
ponents in the near-wall region. The complete deriva- 

tion of the boundary conditions can be found in 
Date [19]; here, it will suffice to note the general 
form of the boundary conditions appropriate to the 
four boundaries. It is as follows: 

w 0 = g,(~“-~no)+g20J +g3v 
pn2 “’ Ls*o 

(24) 

where subscripts 0 and no refer to the boundary node 
and to the adjacent interior one respectively; n denotes 
the distance between the two nodes (see Fig. 2 for 
illustration); and gr, g2, g3 are dimensionless numbers. 

where tl is the angle between the direction of the 
absolute velocity and the cross-sectional plane and 

V,,, and V,,, are the cross-stream and axial shear 
velocities respectively. 

With reference to Fig. 2, the boundary conditions 
are as follows : 

$0 = 0, (29) 

(30) 

In the present calculations it is assumed that the 
temperature on the tube wall BEC is maintained at a 
uniform value. The temperature on the tape surface, 
i.e. the boundaries AB, CD, and DA, is unknown. It 
can be determined bv referring to the fin-actinn of the , 

z& = c,- 1’2 v,2, (32) 

*V,, refers to Ve near the tube-wall; it refers to V,cos 0; 
near the tape-wall, 0; being the angle made by the first radial 

__ gnd-lme away trom the tape-wall with the tape-wall. 

(26) 

Turbulent pow. In the close vicinity of the wall, 

dependent variables such as V,, k, o, T, etc., for 
turbulent flow, vary rapidly with distance from the wall. 
Therefore, to preserve the accuracy of the finite differ- 

ence procedure, very fine grids will be necessary in 

this region. Consequently, the computer time will 

increase substantially. 
To obviate this shortcoming, implications of the 

“log-law of the wall” suggested by Backshall and 

Landis [17] are used to serve as the boundary condi- 
tions. The suggested law pertains to the representation 

of the variation of the axial (V,) and the cross-stream* 

(V,,) velocities in the near-wall region with the distance 
from the wall. The complete derivation of the boundary 
conditions is given in Date [19], here the suggested 
log-law and the boundary conditions are stated. 

and 



852 

and 

where 

and 

s( = tan-’ i 1 V-J” ._._ ~~ 
r, (35) 

\ v<mo/ 

In equation (35), V,,,,, is evaluated from the definition 

of stream function and the log-law of the wall: and 
V,,,, and V,,, in equations (30) and (31) are calculated 

by iterating equations (27) and (28) with V, = L&, 

6.Y = V,“, and s = n, all of which are known. Thus it 
is seen that the variables w, k and E are specified at 

the first grid-node away from the wall whereas $ and 

V, are specified at the wall, V,,, being the slip velocity 

deliberately introduced (see, Patankar and Spalding 

1261). 
To account for the steep gradients of temperature 

near a wall, the value of I,, at the grid-node no is 

calculated from the law suggested by Spalding and 
Jayatillake [25] ; the details of calculations can be found 

in Date [ 191. 

4. PRESENTATION AND DISCUSSION OF RESULTS 

4.1. Laminar flow 
4.1.1. Method of prediction. To predict the friction 

characteristics, the equations of $, (u, and V, were 
solved for given input values of p, p, dP/r’z’ and z/H. 
The predicted profile of K enables the calculation of 
Reynolds number Re, and the friction factor fi:. Thus: 

and 

(36) 

Rr. = !!!%!!-!~ 
P ’ 

(37) 

where V,,, is the mean value of Vz. 
The predicted distribution of V, and $ is subsequently 

used to solve the temperature equation. This requires 
additional inputs, which are: the Prandtl number Pr, 
and the fin-parameter Cs,, and the source term aT/dz’. 
In solving the temperature equation, a dimensionless 
temperature T* is used, where: 

T* = (T- LMQIkfL (38) 

where Q is the uniform heat flux per unit axial 
distance. The dT*/az’ can then be determined from the 
overall heat balance over a length AZ’ as: 
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c?T*Jaz’ is now a known constant since Rei and Pr 
are known. 

The predicted value of T*, and its mean value TX 
enables evaluation of the average Nusselt number Nui. 
Thus : 

(40) 

where, 

and, therefore, 

h = Q/V,- TJW, (41) 

Nui = - llT,*/rc. (42) 

The evaluation of the mean values of I’, and T* in 

the above calculations is carried out by using Simpson 
rule. 

The predictions to be presented were obtained with 
15 x 15 uniformly-spaced grids. This grid size provided 

sufficient numerical accuracy (see Date [ 191). 
4.1.2. Friction characteristics. Figure 3 shows the 

predicted variation off;: with Rei at different values of 
y. The solid line for J’ = E corresponds to the flow in 
a straight semi-circular duct for which an analytical 
solution is available (Weigand [12]). The present pre- 

diction agreed with this exact solution within 1 per cent. 

/ o” 

3 14 

‘i- 

I 0-l 

3xd 
4x IO' I03 2x103 

Re, 

FIG. 3. Predicted friction factor data for fully-developed 
laminar flow. 

aT* 4 
-=--. 
azl xr,ReiPr 

(39) 

The predicted data which lie above this line cor- 
respond to those cases in which the tape possesses a 
finite twist. As would be expected. for the same flow 
rate (or same Rri), the friction factor increases as y 
decreases. Also at lower Reynolds numbers the data 
converge on the line for y = sci, irrespective of the 
value of y. Thus the friction factor data show plausible 
trends. 
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Figure 4 shows the effect of y on the predicted axial 
velocity profifes as Reix 1200. The effect of twist is 
evident from the assymetry exhibited by the profiles. 
As the twist increases (or y decreases), the profiles 
disintegrate into a pattern which shows two peaks of 
axial velocity. 

It should be noted here that unlike in the case of 
y = co, secondary flow exists in cases for which y < co. 
The magnitude of the secondary velocities increases 
with increase in Rei and decrease in y. In the present 

friction factor data, converge on the line for y = co. 
Efict of Prandtl number on Nusselt number at 
C,, = W-Figure 6 shows the variation of Nui with 
Rei for various Prandtl numbers. The solid horizontal 
line again corresponds to the case of y = cc ; as would 
be expected, the predicted value of Nui is unaltered by 
the value of Prandtl number. 

The predicted curves which lie above the solid line 
represent predictions for y = 5.24, and they signify the 

fact that for y < CC, when secondary flow exists, the 

y= 5.24 3 14 2.25 

FIG. 4. Effect of twist-ratio on predicted profiles of axial velocity (V;/V ,) at 
Rei z 1200 (arrows indicate rotation of tape in the direction of fl& 

Predictions at Cfin=~,pr=l.~ 
Symbol Y 

FIG. 5. Influence of twist-ratio on Nusselt number at C,, = T 

predictions, the mean values of the secondary velocity 

were found to be between 10 and 35 per cent of the 
mean axial velocity. 

4.1.3. ~eut-transfer characteristics. EZect of twist- 
ratio on Nusselt number at Cj, = co-Figure 5 shows 
the variation of NUi with Rei for various values of y 
for maximum fin-effect. The solid horizontal line cor- 
responds to the analytical solution for y = co (Eckert 
et al. [13]); and represents Nui = 5-4. This value, which 
is independent of Reynolds number and Prandtl num- 
ber is predicted accurately for three Reynolds numbers. 

The data for other values of y demonstrate that at 
constant Reynolds number the Nusselt number in- 
creases as y decreases. This increase is particularly 
appreciable at high Reynolds numbers. At low 
Reynolds numbers, however, the NUi data, like the 

Nussdt number is dependent on both Reynolds num- 
ber and Prandtl number. The predictions are similar in 
trend to those found in the case of flow in a curved 
pipe (see Akiyama and Cheng [ 141) where the secondary 
flow induced by the curvature increases the convective 
heat transfer. 

The important difference between the results for 
curved pipe and the present predictions is that the 
increase in the Nusselt number in the Prandtl number 
range lo-100 is greater than that in the range l-10. 
Thisincreasein Nusselt number increases with increase 
in the Reynolds number. This is because, added to the 
convection due to secondary velocities (which are large 
in the twisted tape flow), there is convection due to the 
component of the axial velocity [i.e. (n/H)f/l, see 
equation (8)] which is large at high Reynolds numbers. 
The substantial increases in Nusselt number obtained 
at high Prandtl numbers are therefore to be expected. 
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Also within the range of Rei and Pr considered here 

at any fixed Reynolds number, the value of NuJPr 
decreases with increase in Pr; showing thus that Nusselt 
number becomes bounded with increasing Prandtl 

numbers. 
E&t of fin-parameter on Nusselt number-Figure 7 

shows the predicted values of Nui at 4’ = 225 and co 
are shown for three values of Cfin: 0 (i.e. minims 

equalled the average heat-transfer coefficient on the 
tape surface when Cs, = co, then one could obtain that 
Nlri,~DINui,, = (~~+2~)/~~ = 1.64. In the present 
computations the ratio is found to be 2.07 mainly 

because the average heat-transfer coefficient on the tape 
surface was greater than that on the tube wall for 
C,, = co ; the latter coefficient also being slightly larger 

than the average coefficient for Cs, = 0. 

4x102 

: 

Predict ions at C,,, =m, y=524 

Symbol Pr 
n 0. I 
0 I ,o / 
l 10-O I 

IO2 
/ 

* 100~0 9’ 
/ 

---- Curves through / 
the dato 

/ 
4 

FIG. 6. Influence of Prandtl number on Nusselt number at Cfin = (~j. 
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Predictions at Pr-l,y:2.25 
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FIG. 7. Influence of fin-parameter on Nusselt number at y = 2.25. Hori- 
zontal lines correspond to y = a. Dashed lines are curves through the 

predicted data. 

fin-effect), and l-85 (i.e. an intermediate fin-effect), and 
XI (i.e. maximum fin-effect). The values of NUi for 
y = co represented by the solid lines corresponding to 
Cs, = 0, 1.85, and co are respectively 2.594, 3.801 and 
5.4. These values were found to be independent of Rei 
and Pr. 

Note that the ratio Nui,,/Nul,, for 4’ = co is 2.07. 
This can be explained as being primarily due to the 
increase in the surface area available for heat transfer 
when Cs, = co compared to when Cs, = 0. Thus, if the 
average heat-transfer coefficients on the tube wall were 
identical for Cs, = 0 and co, and if these coefficients 

The plausibility of the data for y = 2.25 is, of course, 
shown by their asymptotic behaviour at low Reynolds 
numbers. However, from the designer’s point of view, 
the important observation to be made concerns the 
values of Nu~,,/N~Q,~. The value of this ratio is nearly 
2.1 at low Reynolds number, whereas at Rq = lo’, the 
value of the ratio equals 262. Thus, the improvement 
in heat transfer available from the fin-effect depends 
on the value of Reynolds number when y < co; in 
Date [19], it is shown that it also depends on the 
value of the Prandtl number. 

In Date [19], where many more predicted data are 
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presented, it is shown that for all practical purposes, a 

single carameter Re,/y can be used to correlate the Nui 

data for a particular value of Pr and Ca, . 
Figure 8 shows typical temperature profiles at 

C,, = 0, 1.85 and cc. The figure shows that as Cs, 
increases, the difference between the value of the bulk 

fluid temperature and the tube wall temperature de- 
creases. This supports the trend observed earlier that 

the Nusselt number, which is inversely proportional to 
this temperature difference, must increase as the fin- 
parameter increases. Note also the manner in which 

the value of Cs, affects the gradient of temperature near 

the tape wall. 

4.2.2. Friction characteristics. A typical comparison’ 

of the predicted friction factor with the available 

experimental data is shown in Fig. 9 for y = 4.14. The 

experimental data are under-predicted by nearly 30 
per cent. In Date [19] where comparisons for other 
values of y are presented, underprediction of the same 
order of magnitude is observed. While qualitative 
trends of the predictions is in agreement with the 

experimental data, their quantitative disagreement is 

certainly due to the inadequacy of the model of 
turbulence used in the predictions. The main reason 

for underprediction is that the value of bff, as pre- 
dicted from k and E equations, is too small. Com- 

FIG. 8. Influence of the fin-parameter on predicted profiles to T* at Re, = 810, 
y = 5.24 and Pr = 1.0 (arrows indicate rotation of tape in the direction of flow). 

zo- 

----PredictIons [y--4.15] 

00 o Seymour (1966) 
0 0 

rl 0 Koch(l958) 
0 lo- o o~Thorseneta/.(1969) 

- fo =0.046 

FIG. 9. Comparison of predicted and experimental friction factors 

This completes the presentation and the discussion 
of the laminar flow characteristics. We now turn to the 

turbulent flow characteristics. 

4.2. Turbulent jiow 
4.2.1. Method of presentation. The method employed 

for prediction of friction and heat-transfer charac- 
teristics ofthe turbulent flow is similar to that described 
for laminar flow, except that the equations for k and E 
are solved with values of C, , Cc, Cn, Pref,k, PrCRE and 

Pr,fl. r being specified as explained in Section 2. The 
values off;:, Rei and Nui are calculated in the same man- 
ner asdescribed in Section 4.1, but here these values are 
divided by the ratio of internal to hydraulic diameters 
(i.e. D/D,,). This is done to make a meaningful com- 
parison of the predictions with the available experi- 
mental data. The value of D/D,, used is 1.66. The friction 

factor, Reynolds number and Nusselt number thus 
calculated are referred to by f, Re and Nu respectively. 

putational experiments showed that the predictions 
can be forced to match the experimental data by 

augmenting the effective viscosity (or C,) in the axial 
velocity equation* by a factor greater than 1. Over the 
range of Reynolds numbers considered, the value of 

this factor, however, depended on the value of y. For 
instance, at y = 11.0 the value of the augmentation 
factor was found to be 1.1; at y = 5.15 to be 1.2; 
at y = 4.14 to be 1.35; and at y = 3.14 to be 1.6. This 

means that the constant C,, is not universal, or simply 
that the turbulent viscosity is not isotropic. Lilley and 
Chigier [15] have provided experimental evidence to 
the effect that, in axisymmetric swirling flows, turbulent 
viscosity must be non-isotropic. Roberts [16], who 
predicted a decaying swirling flow, could obtain reason- 

*The predictions can also be forced to match the experi- 
mental data by augmenting the effective viscosity in the 
vorticity equation. 
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able predictions only when the turbulent viscosities in longitudinal-strains. Account of this fact, the author 
the axial and tangential directions were ascribed differ- believes, will bring about the further augmentation of 
ent values. The turbulent viscosity has directional the implied turbulent viscosities to enable quantitat- 
properties (or is non-isotropic) in these cases, because ively correct prediction of the friction factor. The com- 
appreciable velocity gradients (or strains) exist in more putational effort involved, especially in terms of obtain- 
than one direction. In the twisted-tape flow, which is ing convergent solutions to the equations cannot be 
non-axisymmetric swirling-type, a similar situation undermined; and it may be more expedient to follow 
exists. the concept of “augmentation factor” mentioned in the 

If such flow situations are to be predicted without ad last paragraph. 
hocmeans suchas the “augmentation factor” introduced Figure 10 shows the comparison of the predicted and 
above, then one must do away with the turbulent experimental (Backshall [17]) profiles of axial velocity 
viscosity concept. Instead, description of the turbulent at y = 3.08 and Rq = 5 x 104. The agreement between 

FIG. 10. Comparison of predicted (---) and experimental I----, Backshall 
[17]) axial velocity profiles ( Vz/Vz,,) at y = 3.08. (Arrows indicate rotation 

of tape in the direction of flow.) 

Kinetic energy 

2; IO3 

Length scale 

I 
f0 

FIG. 11. Predicted profiles of length scale and kinetic-energy at y = 4.15 and 
Re, = 1.2 x 104. (Arrows indicate rotation of tape in the direction of flow.) 

stresses must be obtained from the solution of Reynolds 
stress equations. The task of this approach is, however, 
quite formidable at the present time. In Date [19] 
simplified forms of the Reynolds stress equations are 
used for prediction purposes. These predictions, al- 
though nearly 15 per cent better than the ones described 
here, do not agree with data. The predicted stresses, 
however, are such that they indeed imply much larger 
turbulent viscosities than the ones predicted by solving 
k and E equations. 

the two profiles is qualitatively acceptable, although 
the magnitude of the predicted axial velocity in the 
centre of the cross-section exceeds the measured value 
by nearly 14 per cent. 

Figure 11 shows the typical distributions of the pre- 
dicted length scale and kinetic energy profiles. The 
kinetic energy profile is plausible; for near the wall, 
where the shear stress is maximum, so is the value of 
energy; near the centre of the cross-section the value of 
energy diminishes since the shear stress diminishes. 

Following Hanjalic’ and Launder [23] and Launder The profiles of the length scale clearly indicate the 

and Ying [24], the simplified forms used in Date [19] usefulness of solving the dissipation (E) equation; for 

can be further refined to account for the fact that the such a length scale distribution, if indeed true, would 

stresses in the plane of cross-section are produced by be difficult to specify algebraically. The predicted dis- 
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tribution, however, seems plausible; for, as would be 
expected, the length scale increases as distance from 
the wall. 

The heat-transfer characteristics are examined next. 
4.2.3. Heat-transfer characteristics. The comparison 

of the predicted and experimental Nusselt numbers is 
shown in Fig. 12. The scatter in the experimental data 
is primarily due to the different fin-effects existing in 
different experimental set-ups. The predictions were 
therefore obtained for Ce, = 0 and co; the measured 
Nusselt number data should lie between these two 
extremes of the fin-effect. The exact values of the fin- 
effect for the experimental data are unknown; the in- 
vestigators expect the fin-effect to be not greater than 
10 per cent. This means that the measured Nusselt 
numbers cannot be more than 10 per cent greater than 
those for C,, = 0. 

6~10~ 
F 

Reynolds numbers of interest. The multi-point circu- 
lation adjustment procedure must be incorporated in 
the procedure of dosman et al. to ensure convergence 
of the solutions. 

2. The laminar flow predictions for tapes of finite 
twist have agreed asymptotically with the analytical 
solutions for the case of ffow in a straight semi- 
circular duct. The predictions have shown that sig- 
nificant augmentation in heat transfer can be obtained 
at high Reynolds numbers, high Prandtl numbers, low 
twist-ratios (i.e. high twists), and high fin-parameters. 

3. By solving the differential equations for kinetic 
energy and its dissipation rate, the need for algebraic 
specification of the effective viscosity or of the length- 
scale has been removed. 

4. The constants in the turbulence model, as 
suggested by Jones and Launder [IO], although quite 

--- Predictions[y=4.15] 

0 Thorsen etUl.(l969) 

0 Koch (1968) 

Re 

Fw. 12. Comparison of predicted and experimental Nusselt numbers. 

That the experimental data lie much closer to the 
line for C,, = co suggests that the Nusselt number 
data, like the friction factor data, are under-predicted. 
In Date L-193, it is shown that this under-prediction is 
a direct consequence of the fact that the low magnitudes 
of the effective viscosity have been predicted. It is 
important to note, however, that the qualitative trend 
of the predictions is in agreement with the experimental 
data, and one can reasonably argue that if the friction 
factor data were predicted correctly, then so will be the 
Nusselt number data. Indeed when the augmented 
turbulent viscosities were used, the Nusselt number 
predictions were more realistic. 

5. CONCLUWONS 

The following are the conclusions of the present 
paper : 

1. The transport equations of the twisted-tape fIow 
are strongly coupled; therefore, the iteration scheme 
suggested by Gosman et al. [IS] cannot be employed 
successfully over the entire range of twist-ratios and 

universal for flows in which velocity gradients are 
appreciable only in one direction, are found to be 
inadequate for predicting the twisted-tape flow charac- 
teristics. The constants, for example, under-predict the 
value of the friction factor (and consequently the 
Nusselt number). Qualitatively, however, the constants 
predict data which are in agreement with the experi- 
mental data. 

5. The quantitative disagreements, mentioned above, 
expose the inadequacy of the effective-viscosity concept 
in modelling turbulent stresses in twisted-tape flow. 
Future research must seek to obtain the information 
regarding the stresses from the Reynolds stress 
equations. 
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PREVISION DE L’ECOULEMENT ETABLI DANS UN 
TUBE CONTENANT UN RUBAN HELICdiDAL 

Resume-On formule par les equations aux derivees partielles du mouvement et du transfert thermique, 
I’tcoulement etabli laminaire ou turbulent dun fluide a proprittes constantes, dans un tube contenant 
un ruban helicoidal. Ces equations sont resolues en adaptant une methode numerique deja existante 
pour les equations elliptiques bidimensionnelles. On calcule les caracteristiques de frottement et de 
transfert thermique. 

On presente un ensemble de calculs pour I’ecoulement laminaire de FaGon a montrer l’influence du 
nombre de Reynolds, du pas de Thelice. du nombre de Prandtl et du parametre d’ailette. 

Pour calculer la viscosite turbulente ntcessaire, on r&out les equations aux derivees partielles de 
I’energie cinetique turbulente et du taux d’tnergie dissipee. Cette approche est neanmoins insuffisante pour 

des previsions quantitative exactes; on suggere une modification pour eliminer cette imperfection. 

BERECHNUNG EINER AUSGEBILDETEN STRBMUNG IN 
EINEM ROHR MIT SPIRALEINBAUTEN 

Zusammenfassung-Fur den Fall ausgebildeter laminarer und turbulenter Stromung mit einheitlichen 
Stoffeigenschaften in Rohren mit eingebauten Spiralen wurden partielle Differentialgleichungen fur 
Impuls- und Warmeaustausch aufgestellt. 
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Urn Druckabfall und Warmetibergang der Stromung zu berechnen, wurden die Gleichungen durch 
Anpassung einer bekannten numerischen Prozedur fur zweidimensionale elhptische Funktionen gel&t. 
Die Ergebnisse fiir laminare Stromung sind wiedergegeben, urn den EinfluB der Re-Zahl, des Windungs- 
verhlltnisses, der Pr-Zahl und des Rippenparameters auf die Striimungsform zu zeigen. Die scheinbare 
Zahigkeit, die man braucht, urn die Eigenschaften der turbulenten Stromung zu bestimmen, wurde 
berechnet aus der Differentialgleichung fur die kinetische Energie der Turbulenz und die Gri%e der 
Dissipationsenergie. Es zeigte sich, daB diese Naherung fiir genaue quantitative Aussagen nicht ausreicht. 

Es wird ein Verbesserungsvorschlag gemacht. 

PAC’4ET HO.JlHOCTbFO PA3BMTOFO HOTOKA B TPYBE CO IBHEKOM 

~HHOT~~R-~3a~~~~O~O~HOCTbK,p~3BHTOM~~MHH~pHOM~Typ6yn~H~HOMO~HOpOLIHOM TeYeHWW 
B Tpy6e CO IIIHeKOM C+OpMyJlkipOBW C rIOMOLLIbW ypilBHeHFi2i rIep(?HOCa BMrIyJlbCa R TerlJIa B 
YPCTHLIX lTpOrl3BOnHblX. 3TH ypaBHeHHR PemeHbl ll)'TeM MOW$HKaUHli MeTOAB, npHMeHReMOI-0 B 
,ilByMepHblX 3JlJIWlTki'feCKHX ypaBHeHWlX, JlJlR pWieTa K03~~WUWeHTOB TpeHHIl H TtWIOO6MeHa 

rIOTOK& 
npHBeneHHblC paC'IeTHble WHHble &'ISl JlaMBHapHOrO TfFieHAR rIOKa3blBaIOT BJIURHWe 'IACJII 

PeZLnonbnca, kosdxjmqeerrra 3axpy~nnamifl, qecna Hpaunrna u napaMerpa pe6pa ria xaparre- 
pHCfUKllIIOTOKI. 

Ko3+#wf~WeHT Typ6yJIeHTHOfi BI13KOCTH, HeO6XOnkiMbrk AJlfl paC'ieTa XapaKTepFiCTHK Typ6y- 
neHTHOr0 TWeHHR, pac0i~TblBaJtCa rQ’TeM pemeHAR W.$~peHUHaJ-fbHblX ypaBHeH&iii KWHeTWieCKOfi 
3HeprWiTyp6yJleHTHOCTH HCKOpOCTU~HCCW~BUHH3HeprHH.~~H~KO,yCT~HOB~eHO,YTOT~KOiiMeTO~ 
OKil3FiJlCII He~pHrO~HblM~Jl~ TOYHbIX KOJIWYeCTBeHHblX paC'feTOB. npeJVGiraeTCR cnoco6 yCTpaHeHHR 

3TOrO HenOCTaTKa. 
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